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1 Introduction and Project Objective 
The overall goal of this multi-phased research project known as WindSENSE is to develop an observation 
system deployment strategy that would improve wind power generation forecasts. The objective of the 
deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at 
hub-height (~80 m). In Phase III of the project, the focus was on the Mid-Columbia Basin region which 
encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that 
includes Klondike, Stateline, and Hopkins Ridge wind plants. 
 

 
 
Figure 1. Geographical area used in the ensemble sensitivity analysis experiments. A matrix of 199 by 
199 horizontal points with a spacing of approximately 4 km between points was overlaid on the 
Washington-Oregon domain for the experiments. The color shading depicts the terrain elevation (m) on 
the scale of the model grid. The white boxes denote the forecast target areas for which the forecast metric 
(80-m wind speed) was calculated. 
 
The typical hub height of a wind turbine is approximately 80-m above ground level (AGL). So it 
would seem that building meteorological towers in the region upwind of a wind generation facility 
would provide data necessary to improve the short-term forecasts for the 80-m AGL wind speed. 
However, this additional meteorological information typically does not significantly improve the 
accuracy of the 0- to 6-hour ahead wind power forecasts because processes controlling wind 
variability change from day-to-day and, at times, from hour-to-hour. It is also important to note that 
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some processes causing significant changes in wind power production function principally in the 
vertical direction. These processes will not be detected by meteorological towers at off-site locations. 
For these reasons, it is quite challenging to determine the best type of sensors and deployment 
locations. 
 
To address the measurement deployment problem, Ensemble Sensitivity Analysis (ESA) was applied 
in the Phase I portion of the WindSENSE project. The ESA approach was initially designed to 
produce spatial fields that depict the sensitivity of a forecast metric to a set of prior state variables 
selected by the user. The best combination of variables and locations to improve the forecast was 
determined using the Multiple Observation Optimization Algorithm (MOOA) developed in Phase I. 
 
In Zack et al. (2010a), the ESA-MOOA approach was applied and evaluated for the wind plants in 
the Tehachapi Pass region for a period during the warm season. That research demonstrated that 
forecast sensitivity derived from the dataset was characterized by well-defined, localized patterns for 
a number of state variables such as the 80-m wind and the 25-m to 1-km temperature difference prior 
to the forecast time. The sensitivity patterns produced as part of the Tehachapi Pass study were 
coherent and consistent with the basic physical processes that drive wind patterns in the Tehachapi 
area. 
 
In Phase II of the WindSENSE project, the ESA-MOOA approach was extended and applied to the 
wind plants located in the Mid-Columbia Basin wind generation area of Washington-Oregon during 
the summer and to the Tehachapi Pass region during the winter. The objective of this study was to 
identify measurement locations and variables that have the greatest positive impact on the accuracy 
of wind forecasts in the 0- to 6-hour look-ahead periods for the two regions and to establish a higher 
level of confidence in ESA-MOOA for mesoscale applications. The detailed methodology and results 
are provided in separate technical reports listed in the publications section below. 
 
Ideally, the data assimilation scheme used in the Phase III experiments would have been based upon an 
ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Columbia 
Basin sensitivity patterns in the previous studies. However, running an EnKF system at high resolution is 
impractical because of the very high computational cost. Thus, it was decided to use a three-dimensional 
variational (3DVAR) analysis scheme that is less computationally intensive. 
 
The objective of this task is to develop an observation system deployment strategy for the mid Columbia 
Basin (i.e. the BPA wind generation region) that is designed to produce the maximum benefit for 1- to 6-
hour ahead forecasts of hub-height (~80 m) wind speed with a focus on periods of large changes in wind 
speed. There are two tasks in the current project effort designed to validate the ESA observational system 
deployment approach in order to move closer to the overall goal: 
 

(1) Perform an Observing System Experiment (OSE) using a data denial approach.  
(2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Columbia basin 

region. 
 

2 Summary 
 
In Phase I, the ESA-MOOA approach was applied to Tehachapi Pass region during the summer season. In 
Phase II, the ESA-MOOA approach was applied to Mid-Columbia region from 1 May to 19 June 2007 
(warm/summer season) and to the Tehachapi Pass region from 1 January to 18 February 2010 
(winter/cool season) for a series of 48 ensemble members.  



4 

 
Both the Mid-Columbia summer and the Tehachapi Pass winter studies produced lower average 
sensitivities when compared to the Tehachapi Pass summer study. The reason for the lower average 
sensitivities was likely caused by different factors for the two regions. For the Mid-Columbia summer 
study, the likely reason was the fact that more variable, large-scale flows dominate in Washington-Oregon 
compared to Tehachapi Pass. For the Tehachapi Pass winter studies, there was a noted lack of ensemble 
spread likely due to the method used to generate ensemble perturbations. The lack of spread in both the 
metric variable (80-m wind speed) and initial condition (IC) variables was a significant factor that 
affected the interpretation of the Tehachapi winter simulation experiments. 
 
The forecast sensitivities for the Mid-Columbia Basin summer study showed that some IC variables had a 
low impact on the forecast. Other IC variables produced very localized and high sensitivity areas in 80-m 
wind speed forecast at one of the target locations. This result was quite different from the Tehachapi Pass 
summer study which found well-defined, localized patterns of high sensitivity for a number of prior state 
variables.  
 
The most consistently sensitive variables for the Mid-Columbia Basin forecast targets were: (1) 80-m 
wind speed, (2) 10-m to 80-m wind shear, and (3) 2-m to 80-m vertical temperature gradient. These 
variables showed regions of high sensitivity and explained variance extending from the Columbia Gorge 
along and just south of the Mid-Columbia Basin stretching into far eastern Washington State. Areas 
within the Mid-Columbia Basin showed correlations to all three sites. This result suggested that a 
relatively small number of observations in this area would have a beneficial impact on the 80-m wind 
speed forecast at all three target locations. The results of this study indicate that both the seasonal weather 
regimes and exact implementation of the ESA-MOOA method have a dramatic influence on using the 
results to guide the design of sensor networks intended to improve forecast performance. 
 
An important finding of the Mid-Columbia MOOA was that it is necessary to use all three identified 
variables/locations in order to achieve consistent value for the ramp event cases. This result implies that 
increasing the number of variables when using the MOOA does add value to the analyses. The results 
demonstrate that the ESA-MOOA method can produce physically consistent forecast sensitivity results 
for mesoscale flows and short time scales. This information can then be used to provide specific and 
physically reasonable guidance for the design of sensor networks intended to improve the performance of 
forecasts for specific variables (forecast metrics) and locations (forecast target areas).  
 
In Task 1 of Phase III, three sets of data denial and assimilation experiments were performed using 
historical data in order to validate the ESA approach for the Mid-Columbia Basin region (Zack at al., 
2011a). The impact of met tower observations was examined for locations for which forecasts were 
predicted to be sensitive to the atmospheric state by the ESA-MOOA method developed by Zack et al. 
(2010a, b, and c). The objective of the data denial and assimilation experiments was to determine if the 
80-m wind forecasts for three target locations were more sensitive to actual met tower observations in 
highly sensitive areas versus areas of low sensitivity with the inference being that meteorological 
observations within the highly sensitive areas would lead to better forecast performance. 
 
The first set of experiments was performed for the warm season, testing the impact of assimilating data at 
high and low sensitive locations compared with assimilating all available met tower data regardless of 
location. The results indicated that adding met tower observations significantly improved the initial state 
of the atmosphere at the target locations, but the experiments also indicated that imbalances were 
introduced from data assimilation causing an increase in error during the first 2 to 3 hours of the forecast 
(Figure A1 and A2). 
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The second set of experiments was performed for the cool season using the same type of sensitivity 
experiments as done for the warm season. The analysis of the cool season results was hindered by the fact 
that met tower observations for the target locations were not available for this time period so proxy sites 
were used for verification. 
 
The results from the cool season experiments differed somewhat from location to location, making it 
difficult to draw a general conclusion. Part of the reason for this difference was due to the fact that off-site 
proxy met towers had to be used for verification, instead of on-site observations. Even with the 
difficulties caused by not having target location met towers, it is reasonable to infer that assimilating met 
tower observations does have a direct impact on the forecasts by improving the initial model state and 
also forecast performance for the first 3 hours (Figure A3 and A4).  
 
The third set of four warm season experiments was designed to learn more about the impact of the data 
assimilation scheme used to assimilate the met tower observations into the model’s initial state. These 
experiments all involved modifications of the warm season experiment that assimilated all available met 
tower data. The divergence constraint, IAU and ADAS experiments did not improve the forecasts (Figure 
A5). However, the additional experiment using a different covariance structure provided further insight 
into how to construct a real-time data assimilation system in order to realize the full benefits from 
observations in highly sensitive locations as predicted by the ESA technique. 
 
The results from the modified covariance experiment indicate that the data assimilation system used in the 
experiment cannot properly estimate the spatial background covariance with the same detail as ESA. The 
lower forecast MAE of the modified covariance runs suggests there is a direct relationship between how 
the assimilation system determines the impact that an observation will have on the initial field and the 
forecast performance through better estimates in spatial covariance structure. Therefore, a technique that 
can more accurately assess the background covariance structure similar to the ESA technique, but that is 
more computationally efficient for real-time forecasting applications, will be needed to validate the 
sensitivity structure produced.  
 
The overall results of the study indicate that the initial model state and the first forecast hour are improved 
when observed tower data are assimilated. For the warm season runs this impact was most pronounced 
closer to the initialization time, while for the cool season the improvement in the forecast was visible in 
the first 0 - 3 hours depending on the proxy verification location. This indicates that the forecasted 
atmospheric flow is highly uncorrelated with the impact of observations from one location to another 
location. After the third hour, the impact of the assimilated observations is minimal on the forecasts. 
However, a slight improvement in the forecasts with all of the met towers assimilated can be seen as far 
out as hour 16 in some of the forecasts. Due to the lack of observations during the cool season at the 
target site, it can only be implied that results presented here are relevant to the actual target locations. 
Results also indicate that the impact of observations were sensitive to seasonal flow, observation location, 
and the data assimilation scheme. 
 
Even though there are differences between the cool and warm season results, the cool season results are 
consistent with the warm season conclusions: (1) adding met tower observations significantly improved 
the values of near surface wind speed in the initial model state of the atmosphere at the target locations 
and (2) imbalances were introduced into the model causing an increase in error during the spin-up time. 
 
The lower forecast MAE of the modified covariance runs suggests that a technique which can better 
estimate background error covariance structures similar to the ESA technique will be needed to validate 
the sensitivity structure produced.  However, the technique will need to be computationally efficient 
enough for real-time applications. Computationally efficient techniques, such as a hybrid-3DVAR 
assimilation method, that can address the need for better estimates of background error covariance 
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structures are under development for future use. The hybrid method estimates the background error 
covariance by using a smaller and lower resolution ensemble that is similar to the ESA technique but 
requires less computational resources. This technique links the spread from the ensemble to the 
covariance structure of a single high-resolution 3DVAR assimilation system as described by Wang et al. 
(2008a, b).  
 
In addition, bias correction techniques such as the Mass et al. (2006) method should be examined for 
future applications where model and assimilation biases are noticeably present. Bias correction techniques 
are computationally efficient and only require a simple bias correction applied directly to the observations 
before assimilation.  This technique can be used independent of the assimilation method or numerical 
model used. It is particularly valuable in regions where a numerical bias is prominent as in the 
experiments for the Mid-Columbia River Basin. Therefore, the new hybrid assimilation technique coupled 
with an observational bias correction method offers the potential for short-term forecast improvement in 
future research projects. 
 
In order to test ESA strategies for future instrumentation deployment, a set of OSSEs were performed 
for a 9-day period for both cool season and warm season periods (Zack et al. 2011b) in Task 2. The 
control experiments assimilated synthetic rawinsonde and surface data from the nature runs. The 
remaining experiments tested various possible deployment scenarios involving 80-m met towers that 
measure temperature, pressure, dew point temperature, wind speed, and wind direction only at one 
level, and sodars that measure only wind between about 30 and 200 m above ground level. Further 
research is warranted to determine the best deployment strategy on a cost-benefit basis considering the 
number, types, and locations of future instrumentation. 
 
The warm season results suggest that assimilating a single observation at the target location improved 
the initial conditions, but the forecast was only improved for the first hour (Figure A6). The addition of a 
modest number of sodars (ten or less) in locations suggested by the ESA analyses reduced the MAE of 
the 80-m wind speed from 10-20% through the first four to five hours of the forecasts. The use of sodar 
data, which has wind information over multiple vertical levels surrounding wind turbine hub heights, 
had a greater positive impact than meteorological tower data at a single level, despite the use of 
thermodynamic variables from tower data. 
 
For the cool season, none of the OSSEs produced a significant improvement for the first three forecast 
hours, although there was some improvement in the fourth and fifth hours (Figure A7). It seems likely 
that it is more difficult to improve forecasts in the cool season when synoptic influences are greater and 
conventional data captures a greater portion of the atmospheric circulations that impact wind speeds in 
the Mid-Columbia Basin. 
 
Task 2 results indicated that the use of met tower data in locations with a high sensitivity for BPA sites 
could improve the short-term forecast, if the data assimilation system is properly configured to 
maximize the value provided by the observations. This finding is consistent with the Task 3 results – 
improvements in the forecast for the first few hours may be possible with a modest number of 
observations in high sensitivity areas, but more work is needed to find and tune the best assimilation 
procedure for this particular geographic area and instrumentation types.  
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Figure A1. Mean absolute error (MAE) as a function of look-ahead time for twice per day (0000 
and 1200 UTC initialization times) NWP forecasts of 80-m wind speed (ms-1) for the SLM 
(Stateline) wind farm for the warm season (1 May – 20 June 2007) for the control run without 
met tower data assimilation (blue line), the all six Bonneville Power Administration (BPA) 
meteorological tower data assimilation run (red-orange line), assimilation of a high sensitivity 
observation point (yellow line), and the assimilation of a low sensitivity observation point (green 
line).  

 

Figure A2. Bias (Mean Error) as a function of look-ahead time for twice per day (0000 and 
1200 UTC initialization times) NWP forecasts of 80-m wind speed (ms-1) for the SLM (Stateline) 
wind farm for the warm season (1 May – 20 June 2007) for the control run without met tower 
data assimilation (blue line), the all six Bonneville Power Administration (BPA) meteorological 
tower data assimilation run (red-orange line), assimilation of a high sensitivity observation point 
(yellow line), and the assimilation of a low sensitivity observation point (green line). 
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Figure A3. Same as Figure A1 except for 62-m wind speed (ms-1) for the VNM (Vansycle) met 
tower for the cool season (1 January – 20 February 2010). 
 
 

 
 

Figure A4. Same as Figure A2 except for 62-m wind speed (ms-1) for the VNM (Vansycle) met 
tower for the cool season (1 January – 20 February 2010). 
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Figure A5. Mean absolute error (MAE) as a function of look-ahead time for twice per day (0000 
and 1200 UTC initialization times) NWP forecasts of 80-m wind speed (ms-1) for the SLM 
(Stateline) wind farm for the warm season (1 May – 20 June 2007) for the control run without 
met tower data assimilation (dark blue line), the all six Bonneville Power Administration (BPA) 
meteorological tower data assimilation run (red-orange line), assimilation with the divergent 
constraint (yellow line), the assimilation with a modified correlation function (green line), the 
assimilation using IAU (brown line), and the assimilation using ADAS (light blue line) using 
observations from the six BPA meteorological towers. 
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Figure A6. Mean absolute error (MAE) of 80-m wind speed (ms-1) at Klondike for all of the 
warm season (May 2007) experiments. 

 
 

 
 
Figure A7. Mean absolute errors (MAE) of 80-m wind speed at Klondike for all of the cool 
season (January 2010) experiments. 
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